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Dynamo action in a fully helical Arn’old-Beltrami-Childress flow is studied using both direct numerical
simulations and subgrid modeling. Sufficient scale separation is given in order to allow for large-scale mag-
netic energy buildup. Growth of magnetic energy obtains down to a magnetic Prandtl number PM =RM /RV

close to 0.005, where RV and RM are the kinetic and magnetic Reynolds numbers. The critical magnetic
Reynolds number for dynamo action RM

c seems to saturate at values close to 20. Detailed studies of the
dependence of the amplitude of the saturated magnetic energy with PM are presented. When PM is decreased,
numerical experiments are conducted with either RV or RM kept constant. In the former case, the ratio of
magnetic to kinetic energy saturates to a value slightly below unity as PM decreases. Examination of energy
spectra and structures in real space reveals that quenching of the velocity by a large-scale magnetic field takes
place, with an inverse cascade of magnetic helicity and a force-free field at large scale in the saturated regime.
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I. INTRODUCTION

In recent years the increase in computing power, as well
as the development of subgrid models for magnetohydrody-
namic �MHD� turbulence �1–5� has allowed the study of a
numerically almost unexplored territory: the regime of low
magnetic Prandtl number �PM =RM /RV, where RV and RM
are, respectively, the kinetic and magnetic Reynolds num-
bers�. This MHD regime is of particular importance since
several astrophysical �6� and geophysical �7,8� problems are
characterized by PM �1, such as, for example, in the liquid
core of planets, such as Earth, or in the convection zone of
solar-type stars. Also, liquid metals �e.g., mercury, sodium,
and gallium� used in the laboratory in attempting to generate
dynamo magnetic fields are in this regime �9–13�.

In recent publications �14–18�, driven turbulent MHD dy-
namos were studied numerically within the framework of
rectangular periodic boundary conditions. As PM is lowered
at fixed viscosity, the magnetofluid becomes more resistive
than it is viscous, and it was found that magnetic fields were
harder to excite by the dynamo process because of the in-
creased turbulence in the fluid. The principal result was in
obtaining the dependence of the critical magnetic Reynolds
number RM

c with the magnetic Prandtl number. These studies
were done for several settings, ranging from coherent helical
�18� and nonhelical �15,17� forcing, as well as for random
forcing �14,16,19� �see also �20,21� for theoretical arguments
based on the Kazantsev model �22��. In all cases, an
asymptotic regime was found at small values of PM.

For coherent forcing such as the Taylor-Green vortex
�which corresponds to several laboratory experiments using
two counterrotating disks�, the value of RM

c was observed to
increase by a factor larger than 6 before the asymptotic re-
gime for small values of PM was reached �15�. Although the
precise value of RM

c in experiments is expected to be modi-
fied by the presence of boundaries, it is of interest to study
what properties of the forcing can modify and decrease its
value. It is well known from theory �23�, two-point closure
models �24�, and direct numerical simulations �DNSs� at
PM =1 �25–27� that the presence of net helicity in the flow

helps the dynamo and decreases the value of RM
c .

In �18� dynamos with a helical forcing function were
studied using the Roberts flow, but mechanical energy was
injected at a wave number �k�=�2, which left no room in the
spectrum for any back-transfer of magnetic helicity as ex-
pected in the helical case �24,28,29� �the computations were
done in a box of length 2� corresponding to a k=1 gravest
mode�. Indeed, the magnetic energy spectrum in these simu-
lations peaked at scales smaller than the forcing scale at all
times. In this work, in contrast, we study the effect of a fully
helical Arn’old-Beltrami-Childress �ABC� forcing �30� with
energy injected at a slightly smaller scale �note that the ABC
forcing is related to the Roberts forcing, since it can be de-
fined as a superposition of three Roberts flows�. As a result
of the intermediate-scale forcing, some � effect or inverse
cascade of magnetic helicity can a priori develop and a mag-
netic field at scales larger than the forcing scale can grow.

ABC flows and helical dynamos were explored in many
different contexts in the literature �see, e.g., �31� for a study
close to PM =1 and �32,33� for studies in the context of fast
dynamo action�. The main aim of the present work is to
study the impact of helical flows at intermediate scales in the
development of magnetic fields through dynamo action at
PM �1. In this context, it is worth noting that some simula-
tions of ABC dynamos in the low-magnetic-Prandtl-number
regime were discussed in �27,34�, although no systematic
exploration of the space of parameters was attempted. Also,
Ref. �35� presented some preliminary results for the kine-
matic dynamo regime with ABC forcing. In this work we
will focus on a study of the generation of large-scale mag-
netic fields and of the nonlinear saturation regime. A similar
study was recently conducted in �36� using mean-field theory
�28,29� and shell models. In this paper, we attempt to sys-
tematically study the saturation values of the fields for heli-
cal flows at PM �1 in numerical simulations.

II. DEFINITIONS AND METHODOLOGY

In a familiar set of dimensionless �“Alfvénic”� units the
equations of magnetohydrodynamics are
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�v

�t
+ v · �v = − �P + j � B + ��2v + f , �1�

�B

�t
+ v · �B = B · �v + ��2B , �2�

with � ·v=� ·B=0. Here, v is the velocity field, regarded as
incompressible, and B is the magnetic field, related to the
electric current density j by j=��B. P is the pressure, ob-
tained by solving the Poisson equation that results from tak-
ing the divergence of Eq. �1� and using the incompressibility
condition � ·v=0. The viscosity � and magnetic diffusivity �
define mechanical Reynolds numbers and magnetic Rey-
nolds numbers, respectively, as RV=LU /� and RM =LU /�.
Here U is a typical turbulent flow speed �the rms velocity in
the following sections, U= �u2�1/2, with the brackets denoting
spatial averaging� and L is a length scale associated with
spatial variations of large-scale flow �the integral length scale
of the flow�.

Some global quantities will appear repeatedly in the next
sections. These are the total energy �the sum of the kinetic EV

and magnetic EM energies� E=EV+EM = 1
2	�u2+B2�dV, the

magnetic helicity HM =	A ·B dV �where A is the vector po-
tential, defined such as B=��A�, the current helicity HJ
=	B · j dV, and the kinetic helicity HV=	v ·� dV �where �
=��v is the vorticity�. While E and HM are ideal ��=�
=0� quadratic invariants of the MHD equations, HJ and HV

are not. In practice, kinetic helicity in helical dynamos is
injected into the flow by the mechanical forcing f �e.g., by
rotation and stratification in geophysical and astrophysical
flows �23��. We define also the kinetic and magnetic energy
dissipation rates, respectively, as �V=���2� and �M =��j2�.

Equations �1� and �2� are solved numerically using a par-
allel pseudospectral code, as described in �17,18�. We impose
rectangular periodic boundary conditions throughout, using a
three-dimensional box of edge 2�. The integral and Taylor
scales are defined, respectively, as

L = 2�

k

k−1�v̂�k��2�

k

�v̂�k��2, �3�

	 = 2��

k

�v̂�k��2�

k

k2�v̂�k��2
1/2
, �4�

where v̂�k� is the amplitude of the mode with wave vector k
�k= �k�� in the Fourier transform of v. Using the Taylor
length scale, we can also define a Taylor-based Reynolds
number R	=	U /�.

The external forcing function f in Eq. �1� injects both
kinetic energy and kinetic helicity. For f we use the ABC
flow

fABC = f0��B cos�kFy� + C sin�kFz��x̂ + �C cos�kFz�

+ A sin�kFx��ŷ + �A cos�kFx� + B sin�kFy��ẑ� , �5�

with A=0.9, B=1, C=1.1 �34�, and kF=3. The ABC flow is
an eigenfunction of the curl with eigenvalue kF, and as a
result, if used as an initial condition, it is an exact solution of
the Euler equations. In the hydrodynamic simulations, for

large enough � �small RV� the laminar solution is stable. As �
is decreased the laminar flow becomes unstable and develops
turbulence �see �37� for a study of early bifurcations at inter-
mediate Reynolds numbers�.

To properly resolve the turbulent flow, the maximum
wave number in the code, kmax=N /3 �N is the linear resolu-
tion and the standard 2/3-rule for de-aliasing is used�, has to
be larger than the mechanical dissipation wave number k�

= ��V /�3�1/4. As a result, as � decreases and RV increases, the
linear resolution N has to be increased. At some point the use
of DNSs to solve Eqs. �1� and �2� turns out to be too expen-
sive from a computational point of view and some kind of
model for unresolved scales is needed.

To extend the range of RV and PM studied, we use the
Lagrangian-averaged MHD equations �LAMHD, also known
as the MHD � model� �4,38,39�

�v

�t
+ us · �v = − v j � us

j − �P̃ + j � Bs + ��2v + f , �6�

�Bs

�t
+ us · �Bs = Bs · �us + ��2B . �7�

In these equations, the pressure P̃ is determined, as before,
from the divergence of Eq. �6� and the incompressibility con-
dition. The suffix s denotes smoothed fields, related to the
unsmoothed fields by

v = �1 − �V
2�2�us, �8�

B = �1 − �M
2 �2�Bs, �9�

where �V and �M are two filtering scales.
The total energy in this system is given by E=EV+EM

= 1
2	�v ·us+B ·Bs�dV; it is one of the ideal quadratic invari-

ants of the LAMHD equations. Equivalently, the magnetic
helicity invariant is now given by HM =	As ·Bs dV, where
the smooth vector potential is defined such as Bs=��As.
The current helicity is given by HJ=	Bs · j dV. The expres-
sion for the kinetic helicity is the same in MHD and
LAMHD, and the dissipation rates in LAMHD are �V
=��� ·�s� and �M =��j2�, where �s=��us �5�.

The LAMHD equations are a regularization of the MHD
equations, and as a result, they allow for simulations of tur-
bulent flows at a given Reynolds number using a lower reso-
lution than in DNSs. This subgrid model was tested against
DNSs of MHD flows in �4,5�. As in previous studies of dy-
namo action at low PM, the ratio of the two filtering scales
�V and �M was set using the ratio of the kinetic and magnetic
dissipation scales—i.e., �V /�M = PM

3/4 �15�. The value of �V
depends on the linear resolution and was adjusted to 1/�V
�kmax/2 �40�.

In the next section, we describe the computations and the
results for both the kinematic dynamo regime �where j�B is
negligible in Eq. �1�� and for full MHD �where the Lorentz
force modifies the flow�. The first step is to establish what
are the thresholds in RM at which dynamo behavior sets in as
RV is raised and PM is decreased �Sec. III A�. The procedure
to do this is the following �see, e.g., �15��. First a hydrody-
namic simulation at a given value of RV is done. Then, a
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small and random �nonhelical� magnetic field is introduced
and several simulations are done changing only the value of
RM. At a given RM, the magnetic energy can either decay or
grow exponentially. In each simulation, the magnetic energy
growth rate 
 is then defined as 
=d ln�EM� /dt �note that
with this definition, 
 is twice the growth rate of the mag-
netic field B�. The critical magnetic Reynolds number RM

c for
the onset of dynamo action corresponds to 
=0 and, in prac-
tice, is obtained from a linear interpolation between the two
points with, respectively, positive and negative 
 closest to
zero. The growth rate 
 is typically expressed in units of the
reciprocal of the large-scale eddy turnover time T=L /U.

Once the values of RM
c for different values of PM �1 have

been found, simulations for RM �RM
c are conducted for

longer times �Sec. III B�. In this case, magnetic fields are
initially amplified exponentially and then saturate due to the
back reaction of the magnetic field on the flow. In helical
flows, this saturation is accompanied by the growth of mag-
netic fields in the largest scale available in the box. In this
regime, we will study the maximum value attained by the
magnetic energy as a function of PM �Sec. III C�, as well as
the amount of magnetic energy at scales larger than the forc-
ing scale �Sec. III D�. Note that, while the determination of
RM

c described above is done �for computational reasons�
varying RM while keeping RV fixed, in the nonlinear regime
simulations are done following the same procedure, but also
varying RV while keeping RM constant. Different results are
obtained depending on the way the space of parameters is
explored. Asymptotic regimes are found for the latter case,
but the former case is also discussed here since it is often
considered in numerical explorations. Finally, Sec. IV is the
conclusion.

III. SIMULATIONS AND RESULTS

In order to obtain a systematic study of dynamo action for
ABC forcing and PM �1, a suite of several simulations was

conducted. Table I shows the parameters used in the simula-
tions. Note that when a range is invoked in the values of RM,
it indicates several runs were done with the same value of
RV, but changing the value of RM to span the range �typically
three to five runs�. The set of runs 6 and 6a have the same
parameters ��, �, and rms velocity�, but while set 6 com-
prises DNSs at resolutions of 2563 grid points, in set 6a the
spatial resolution is 643 and the LAMHD equations were
used in order to further the testing of the model. Similar
considerations apply to run 9 and set 9b.

A. Threshold for dynamo action

Figure 1 summarizes the results of the study of the depen-
dence of the threshold RM

c as PM is decreased. For values of
RM above the curve, dynamo action takes place and initially
small magnetic fields are amplified. Below the curve, Ohmic
dissipation is too large to sustain a dynamo. Noteworthy is
the qualitative similarity of the curve between the ABC flow
and previous results using different mechanical forcings

TABLE I. Parameters for the simulations: kinematic viscosity �, Taylor Reynolds number R	, mechanical
Reynolds number RV, range of values of the magnetic Reynolds number RM for a given flow, linear resolution
N, and value of the mechanical filter length �V �with �V /�M = �RM /RV�3/4 in each case�. For direct simula-
tions �no subgrid model�, �V need not be defined. Runs in set 6a have the same values of parameters as in set
6, but a subgrid model at a lower resolution was used. Run 9 has the same parameters as set 9b with RM

=41, but was done using a DNS. The lowest PM achieved for this set of runs is �0.005.

Set � R	 RV RM N �V

1 0.2 11 11 9–16 64

2 0.1 21 23 10–19 64

3 4�10−2 55 71 17–71 64

4 9�10−3 161 240 18–54 64

5 4�10−3 250 450 15–450 128

6 2�10−3 360 820 10–41 256

6a 2�10−3 290 840 10–41 64 0.1

7 1�10−3 340 1700 14–42 128 0.0625

8 6.2�10−4 680 2500 39 512

9 5�10−4 500 3400 41 512

9b 5�10−4 500 3400 14–42 256 0.03125

10 2.5�10−4 1100 6200 77 1024

FIG. 1. Critical magnetic Reynolds RM
c as a function of PM

−1:
DNSs �solid line� and LAMHD simulations �dotted line�. Note the
saturation for PM �0.02.
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�15,17–19�. Namely, an increase in RM
c is observed as turbu-

lence develops, and then an asymptotic regime is found in
which the value of RM

c is independent of PM. Note that
LAMHD simulations were used to extend the study for val-
ues of PM smaller than what can be studied using DNSs.
Simulations at the same value of PM were carried out with
the two methods to compare the results �sets 6 and 6a�. This
procedure was used before in �15�. As in the previous study,
the LAMHD equations slightly overestimate the value of RM

c .
Besides the similarities in the shape of the curves for dif-

ferent forcing functions, two quantitative differences are
striking: �i� only a mild rise in RM

c is observed here as PM is
decreased �a factor of 2, while a factor larger than 6 obtains
for the Taylor-Green vortex �15� and a factor larger than 5
for random forcing �19�� and �ii� the asymptotic value of RM

c

for small values of PM is 10 times smaller than for other
flows studied �15,18,19�. A similar result was obtained using
mean-field theory and shell models in �36�, and the quanti-
tative differences observed were associated with the relative
ease to excite large-scale helical dynamos compared with
nonhelical and small-scale dynamos.

Note that the curve in Fig. 1 was constructed using sets
1–7 and 9b of Table I. Several runs at constant RV but vary-
ing RM are required to define RM

c . Set 9b reveals a dynamo at
the lowest magnetic Prandtl number known today in numeri-
cal simulations: namely, PM =4.7�10−3.

Figure 2 shows the details of how the thresholds for the
determination of the RM

c = f�PM
−1� curve were calculated. For

small initial EM, broadly distributed over a set of wave num-
bers, � was decreased in steps to raise RM in the same me-
chanical setting until a value of 
�0 was identified. A linear
fit between the two points with 
 closest to 0± provides a
single point on the curves in Fig. 1. Note that Fig. 2 also
gives bounds for the uncertainties in the determination of the
threshold RM

c �see, e.g., �15��: errors in Fig. 1 can be defined
as the distance between the value of RM

c and the value of RM
in the simulation with 
 closest to 0. Note also the

asymptotic approach to a growth rate of order unity for large
values of the magnetic Reynolds number, such as, for ex-
ample, in the runs in set 5.

B. Time evolution

1. Comparison of MHD and LAMHD

A comparison of the time evolution of the magnetic en-
ergy in two dynamo runs with the same magnetic Reynolds
and Prandtl numbers �RM �41, PM =5�10−2� is shown in
Fig. 3. One of the runs is a DNS from set 6, while the other
is a LAMHD simulation from set 6a. Two different stages
can be identified at first sight in these runs: the kinematic
regime at early times, with an exponential amplification of
the magnetic energy �used to define the growth rates and
thresholds in Figs. 1 and 2�, and the saturated regime at late
times. As expected from the results discussed in the previous
subsection, the LAMHD equations at a coarser grid �643� are
able to capture the kinematic dynamo regime. While in
DNSs with a resolution of 2563 the growth rate is 
�0.18,
in the LAMHD simulation 
�0.20. But the LAMHD simu-
lation also captures properly the saturation �albeit the satu-
rated level is reached a bit earlier� and the amplitudes of the
magnetic energy in the steady state are comparable �see inset
in Fig. 3�. Small differences observed in the time evolution
are likely due to differences in the initial random magnetic
seed. In the following, we shall use both DNS and LAMHD
simulations to study the saturated regime at low PM.

2. Time evolution for RV fixed

In helical flows, as magnetic energy saturates, a large-
scale magnetic field develops �i.e., at scales larger than the
forcing scale� due to the helical � effect �23,24,27–29,41�. It
is of interest to know what happens with the amplitude of the
magnetic field as the value of PM is decreased. An example
is shown in Fig. 4, which gives the magnetic energy as a
function of time for runs in set 5. Only the value of RM �and
therefore of PM� is changed between the runs �RV�450 in all
runs and PM varying from 1 to 0.03�. For large values of RM
�but not necessarily for values of PM close to unity�, the
growth rate 
 is independent of RM and of order 1 as noted in
Sec. III A. Furthermore, as PM is decreased, both 
 and the

FIG. 2. Growth rates as a function of RM. Each line corresponds
to several simulations at constant RV �fixed ��, and each point in the
line indicates the exponential growth �or decay� rate at a fixed value
of RM. The point where each curve crosses 
=0 gives the threshold
RM

c for dynamo instability. Points from DNSs are connected with
solid lines, and labels are the following: set 1 ���, set 2 ���, set 3
���, set 4 ���, set 5 ���, and set 6 �+�. Points from LAMHD
simulations are connected with dotted lines: set 6a �+�, set 7 ���,
and set 9b ���. Note the accumulation of lines near RM �20. The
inset shows the two points closer to 
=0 for each set of runs.

FIG. 3. Time history of the magnetic energy for runs in set 6
�dashed line� and in set 6a �solid line� with RM �41 and PM =5
�10−2. The inset shows the time evolution of the magnetic energy
after saturation, in linear scale.
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saturation value of the magnetic energy decrease. However,
for the lowest value of PM studied here, the magnetic Rey-
nolds number is quite low and close to RM

c . In that context,
computations varying PM while keeping RM constant are use-
ful to see what fraction of the present result is a threshold
effect when RM is close to RM

c .
Figure 5 shows the evolution of the magnetic helicity as a

function of time for the same simulations as in Fig. 4. The
external forcing injects positive kinetic helicity in the flow.
In the kinematic regime, the � effect is proportional to minus
the kinetic helicity �28,29�. From mean-field theory, the mag-
netic field in the large scales should grow with magnetic
helicity of the same sign as the � effect �negative�, as indeed
observed �see �27,42� for helical dynamo simulations at PM
=1�. In the simulations, magnetic helicity grows exponen-
tially during the kinematic regime. In runs with small RM, the
saturated state is reached shortly after the saturation of the
exponential phase. But as RM is increased, it is now clear that
an intermediate stage develops in which magnetic energy and
helicity keep growing slowly. As a result, saturation takes
place in longer times and the time to reach the final steady
state depends on the large-scale magnetic diffusion time
�T��4�2 /��. The dependence of the saturation time with
RM can be observed in Fig. 5. It is also worth mentioning that
even in the runs with PM �1, the saturation of magnetic
helicity can be well described by the formula HM�t�
=H0�kF /k0�2�1−exp�−2�k0

2�t− tsat���, where k0=1 is the

gravest mode, H0�kF /k0�2 is the saturation amplitude of the
magnetic helicity at late times, and tsat is the saturation time
of the small-scale magnetic field �27� �the formula approxi-
mates the evolution of HM�t� only for t� tsat, after the growth
of the small-scale magnetic field saturates�. This result indi-
cates that the slow saturation of the dynamo is dominated by
the evolution of the magnetic helicity in the largest scale in
the system �note that the formula describes the late saturation
of the magnetic helicity, dominated by its large scale com-
ponent�.

3. Time evolution for RM fixed

From Figs. 4 and 5 it seems apparent that small values of
PM have a negative impact on the amplitude of the magnetic
field generated by the dynamo. However, different results are
obtained when the space of parameters is explored keeping
RM constant and increasing RV, as another way to decrease
PM. Figure 6 shows the results in this case for the time evo-
lution of the magnetic energy. As RV is increased from small
values, a drop in the growth rate 
 and in the saturation value
of the magnetic energy is observed. But then an asymptotic
regime is reached, in which both 
 and the saturation value
seem to be roughly independent of RV and PM. As a result,
we conclude that the behavior observed in Figs. 4 and 5 is
the result of a critical slowing down: if the space of param-
eters is explored at constant RV, as PM is decreased, RM gets
closer to RM

c until no dynamo action is possible. On the other
hand, all the simulations with PM �0.05 shown in Fig. 5
have RM /RM

c approximately constant �see Fig. 1� and a criti-
cal slowing down is not observed.

C. Saturation values

The amplitude of the magnetic energy �normalized by the
kinetic energy� as a function of the magnetic Prandtl number
after saturation takes place is shown in Fig. 7. This figure
summarizes the results discussed in Figs. 4 and 6. As the
value of PM is decreased, if RV is kept constant and RM �and
thus PM� decreases, the saturation of the dynamo takes place
for lower values of the magnetic energy. This is to be ex-
pected since as we decrease PM we also decrease RM and at

FIG. 4. Time history of the magnetic energy for runs in set 5
�constant RV�450�. The magnetic Reynolds numbers of the runs
are RM �22 �dashed line�, RM �45 �dashed-dotted line�, RM �180
�dotted line�, and RM �450 �solid line�.

FIG. 5. Time history of �minus� the magnetic helicity for runs in
set 5 �constant RV�450�. The magnetic Reynolds numbers of the
runs are RM �22 �dashed line�, RM �45 �dashed-dotted line�, RM

�180 �dotted line�, and RM �450 �solid line�.

FIG. 6. Time history of the magnetic energy in simulations at
constant RM �41 ��=4�10−2�. The different runs are taken from
set 3 �PM =1, dashed line�, set 4 �PM =0.225, dotted line�, set 5
�PM =0.1, dash-dotted line�, set 6 �PM =0.05, solid line�, set 7 �
PM =0.025, dash–triple-dotted line�, and finally set 9 �PM =0.0125,
long-dashed line�.
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some point RM
c is reached. It is not clear whether such a

strong dependence would be observed if the constant RV runs
were performed at substantially higher values of RV as found
in astronomical bodies and in the laboratory; however, such
runs would be quite demanding from a numerical standpoint
unless one resorts to large-eddy-simulation �LES� tech-
niques, few of which have been developed in MHD �see,
e.g., �1–3��. For values of RM smaller than RM

c , no dynamo
action is expected and the ratio EM /EV should indeed go to
zero. On the other hand, in the simulations with constant RV,
the ratio EM /EV seems to saturate for P
0.25 and reach an
approximately constant value close to �0.5. This indicates
that small-scale turbulent fluctuations in the velocity field are
strongly quenched by the large-scale magnetic field, as will
be also shown later in the spectral evolution of the energies.
The ratio EM /EV in helical large-scale dynamos is also ex-
pected to be dependent on the scale separation between the
forcing wave number �here fixed to kF=3� and the largest
wave number in the system �here k=1�. As the scale separa-
tion increases and there is more space for an inverse cascade
of magnetic helicity, we expect the ratio EM /EV in the PM
�1 regime to also increase.

Figure 8 shows the ratio of the magnetic energy dissipa-
tion rate �M to the kinetic energy dissipation rate �V in the
saturated state for the same runs as in Fig. 7. At constant RV,
for small values of PM, a drop in the ratio is observed as the
value of RM gets closer to the threshold. On the other hand,
at constant RM, more and more energy is dissipated by
Ohmic dissipation as PM is decreased.

D. Spectral evolution

1. Kinetic and magnetic energy

In �17,18� it was shown using different forcing functions
that even at low PM the magnetic energy spectrum in the
kinematic regime of the dynamo peaks at small scales. In
these simulations, the critical magnetic Reynolds number RM

c

was of the order of a few hundreds, and as a result, small
scales were excited. For ABC forcing, RM

c is of the order of a
few tens and close to the threshold small scales are damped
fast. Only large-scale dynamo action is observed and thus,

even at early times, the magnetic energy spectrum peaks at
large scales. However, if RM is increased above RM �400, a
magnetic energy spectrum that peaks at scales smaller than
the forcing scale �as in �17,18�� is recovered. We focus here
on large-scale dynamo action and, as a result, will discuss the
spectral evolution in simulations with RM of a few tens.

Figure 9 shows the evolution of the magnetic energy spec-
trum at different times for a run in set 6 with RM �41 �PM

=0.05�. As in previous studies, in the kinematic regime all
Fourier shells grow with the same rate. Then, magnetic satu-
ration in the small scales is reached, while the k=1 shell
keeps growing until it eventually saturates itself. Figure 10
shows the kinetic and magnetic energy spectra at late times
�t=210� after saturation at all scales. At k=1 the system is
dominated by magnetic energy, but at smaller scales the
magnetic energy spectrum drops fast. The kinetic energy
spectrum peaks at the forcing band �k=3� and then drops
with a slope compatible with k−3. This drop is due to the
action of the Lorentz force that removes mechanical energy
from the k=3 shell to sustain the magnetic field at k=1
�43,44�.

FIG. 7. Saturation value of the magnetic energy �normalized by
the kinetic energy in the saturated regime�. The triangles correspond
to simulations at constant RV, while the squares correspond to simu-
lations at constant RM �squares connected with solid lines are from
DNSs, while squares connected with dotted lines are from LAMHD
simulations�. Note the saturation at low PM for constant RM runs.

FIG. 8. Saturation value of the magnetic dissipation rate normal-
ized by the kinetic energy in the saturated regime. The triangles
correspond to simulations at constant RV, while the squares corre-
spond to simulations at constant RM �squares connected with solid
lines are from DNSs, while squares connected with dotted lines are
from LAMHD simulations�.

FIG. 9. �Color online� Kinetic energy spectrum at t=0 �thick
�blue� lines�, and magnetic energy spectrum �thin lines� at different
times: t=11 �solid line�, t=29 �dashed line�, t=47 �dashed-dotted
line�, t=95 �dashed–triple-dotted line�, and t=120 �long-dashed
line�. The spectra are for a run in set 6 with RM �41. The last time
is in the saturation regime �see Fig. 6�.
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A slope close to a k−3 power law in the kinetic energy
spectrum in the saturated regime at small scales is observed
in several of the simulations with PM �1. Simulations with
small PM and larger values of RV were done using both the
LAMHD equations and high-resolution DNSs on grids of
5123 and 10243 points �see Table I�. In these simulations, a
power law close to k−5/3 is observed before the kinetic energy
spectrum drops to a steeper slope. As an example, Fig. 11
shows the kinetic and magnetic energy spectra in a simula-
tion from set 9 using the LAMHD model, with RM �41
�PM =0.0125�. Slopes corresponding to k−5/3, k−3, and k−5 are
indicated as a reference. A k−5 power law in the magnetic
energy spectrum �following a k−3 range� was observed in
experiments of dynamo action with constrained helical flows
at low RM �45�; in addition, a k−3 power law for the kinetic
energy spectrum is consistent with the observed magnetic
energy spectrum �46�. Note that these power laws are only
discussed here in order to be able to compare with the ex-

perimental data, but higher Reynolds numbers and thus more
resolution will be needed in order to ascertain the spectral
dependence of the flow and the magnetic field in the different
inertial ranges of low-PM simulations.

2. Helicities and inverse cascades

Figure 12 shows the spectrum of relative magnetic helic-
ity k−1HM�k� /EM�k� at different times for the same run as in
Figs. 9 and 10 �run with RM �41 in set 6�. At all times,
scales larger than the forcing scale have negative magnetic
helicity, while scales of the order of, or smaller than, the
forcing scale have positive magnetic helicity. This is consis-
tent with an inverse cascade of negative magnetic helicity at
wave numbers smaller than kF and with a direct transfer of
positive magnetic helicity at wave numbers larger than kF, as
analyzed in �47� using transfer functions. The relative helic-
ity in the k=1 shell grows with time until reaching satura-
tion. At late times, HM�k=1� /EM�k=1��−1, indicating that
the large-scale magnetic field is nearly force free. Note that a
force-free field has maximum helicity and, from the Schwarz
inequality �HM�k=1� /EM�k=1� ��1, with the maximum
value corresponding to the most helical case.

Figure 13 also shows the spectrum of HV�k�−k2HM�k�,
proportional to �minus� the nonlinear � effect �24�. Three
times are shown for the same run as in Figs. 9, 10, and 12
�set 6, RM �41�. At early times �t=11 and t=29� the spec-
trum of HV�k�−k2HM�k� is close to the spectrum of the ki-
netic helicity. However, as the large-scale magnetic field
grows �t=120 is shown in the figure�, the current helicity
��k2HM�k� in the DNSs� quenches kinetic helicity fluctua-
tions and the total spectrum drops at scales smaller than kF.

As a result, at late times the magnetic energy is mostly in
the modes with wave number k=1, which corresponds to the
largest available scale in the system. In addition, the large-
scale magnetic field is force free �maximum relative helicity
with HM�k�=EM�k� at k=1�. Figure 14 shows slices of the
velocity and magnetic fields at early and late times. The
growth at late times of a magnetic field at scales larger than
the velocity field and the quenching of turbulent velocity
fluctuations at small scales can be identified.

FIG. 10. �Color online� Kinetic �thick �blue� line� and magnetic
energy spectra �thin line� at t=210 in the simulation in set 6 with
RM �41 �PM =0.05�. The thick dashed line shows the total energy
spectrum.

FIG. 11. �Color online� Kinetic �thick �blue� line� and magnetic
energy spectra �thin line� at t=150 in the simulation in set 9 with
RM �41 �PM =0.0125� in the saturated regime. The thick dashed
line shows the total energy spectrum and the thin vertical dotted line
the wave number at which the � filtering sets in. Note the compat-
ibility of the spectra with a Kolmogorov law in the large scales for
the kinetic spectrum, followed by a steeper power law.

FIG. 12. Spectrum of relative magnetic helicity
k−1HM�k� /EM�k� at different times in the simulation in set 6 with
RM �41 �PM =0.05�. The labels are as in Fig. 9. Note the evolution
toward a force-free field at k=1, the small excess of positive helic-
ity at scales slightly smaller than the forcing scale, and the absence
of relative magnetic helicity in the small scales at all times.
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The situation resembles other inverse-cascade situations
that have been studied numerically, in which the fundamental
k=1 mode dominates the dynamics at long times and its
growth is only limited by its own dissipation rate
�27,41,42,48�. In helical dynamo simulations at PM =1 this
behavior has also been observed, although it was speculated
that for PM �1 the inverse cascade of magnetic helicity and
the generation of large-scale fields should be quenched �27�.
In fact, the generation of magnetic energy at scales larger
than the forcing scale is not quenched as PM is decreased.
This is further illustrated in Fig. 15, which shows the ratio of
the magnetic energy in the k=1 shell to the total kinetic

energy in the saturated state as a function of PM. Curves both
at constant RV and constant RM are given. For constant RM
and small PM the magnetic energy in the large scales seems
to be independent of PM and RV. The overall shape of the
curves is similar to the curves in Fig. 7, indicating that at late
times evolution of the total magnetic energy is dominated by
the magnetic field at the largest available scale.

IV. CONCLUSION

We have shown in this paper that the phenomenon of an
inverse cascade of magnetic helicity, and the ensuing growth
of large-scale magnetic energy together with a force-free
magnetic field at large times, is present at low magnetic
Prandtl number, down to PM =0.005 in kinematic-regime
studies and down to PM =0.01 in simulations up to satura-
tion. The quenching of the velocity in the small scales, al-
ready observed in laboratory experiments, is also present.
Augmentation of the critical magnetic Reynolds number as
RV increases is less than in the nonhelical case �14–16� and
even smaller than what was found for helical flows when the
large-scale dynamo is not permitted, such as, e.g., for the
Roberts flow at k�1 �18�. The reason for this difference is
that in the present study we allowed for enough scale sepa-
ration between the forcing scale and the largest scale for
helical large-scale dynamo action to develop. The results are
in agreement with studies using mean-field theory and shell
models to study both large- and small-scale dynamo actions
�36�. Large-scale helical dynamo action in the PM �1 regime
requires much smaller magnetic Reynolds numbers to work
than small-scale dynamos.

The challenge remains, numerically, to be able to reach
values of the magnetic Prandtl number comparable to those
found in geophysics and astrophysics and in the laboratory—
i.e., PM �10−5. However, it is unlikely that the dynamo in-
stability found here down to PM =0.005 would disappear as
PM is lowered further. An open question, of importance from
the experimental point of view when dealing with turbulent
liquid metals, is whether the critical magnetic Reynolds

FIG. 13. Spectrum of HV�k�−k2HM�k�, proportional to �minus�
the nonlinear � effect, in the simulation in set 6 with RM �41
�PM =0.05�. The labels are as in Figs. 9 and 12: the solid line is for
t=11, the dashed line for t=29, and the long dashed line for t
=120. Note the drop of the spectrum at late times at scales smaller
than kF.

FIG. 14. �Color online� Plots of the velocity and magnetic fields
in a cut at z=0 for the simulation in set 6 with RM �41 and RV

�820 �PM =0.05�: �a� vz component in color and vx, vy indicated by
arrows at early time, �b� same as in �a� for the magnetic field at
early time, �c� same as in �a� at late time, and �d� same as in �b� at
late time.

FIG. 15. Saturation value of the magnetic energy in the k=1
shell, normalized by the total kinetic energy. The triangles corre-
spond to simulations at constant RV, while the squares correspond to
simulations at constant RM �squares connected with solid lines are
from DNSs, while squares connected with dotted lines are from
LAMHD simulations�.
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number RM
c will stabilize, for a given flow, at a value inter-

mediate between what it is at PM =1 and the peak of the
curve �see Fig. 1� or whether, for large-scale helical dynamo
action and extremely low values of PM, it will go back down
to the value it has at PM =1. The data up to this day suggest
the former, but on the other hand a study made in the context
of two-point closures of turbulence �46� suggests the latter.
This also means that reliable models of turbulent flows in
MHD must be developed in order so that we can explore in
a more systematic way the parameter-space characteristic of

the flows of interest, as for the geodynamo or the solar dy-
namo.
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